博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
海量数据处理算法—Bit-Map
阅读量:4105 次
发布时间:2019-05-25

本文共 7150 字,大约阅读时间需要 23 分钟。

分享一下我老师大神的人工智能教程!零基础,通俗易懂!

也欢迎大家转载本篇文章。分享知识,造福人民,实现我们中华民族伟大复兴!

               

1. Bit Map算法简介

         来自于《编程珠玑》。所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。

2、 Bit Map的基本思想

        我们先来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,如下图:

                                                       

然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0x01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为一(如下图):
 

                                                      

然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下: 
 

                                                    

然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。

优点:

1.运算效率高,不许进行比较和移位;

2.占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M。 

缺点:

       所有的数据不能重复。即不可对重复的数据进行排序和查找。    

算法思想比较简单,但关键是如何确定十进制的数映射到二进制bit位的map图。

3、 Map映射表

假设需要排序或者查找的总数N=10000000,那么我们需要申请内存空间的大小为int a[1 + N/32],其中:a[0]在内存中占32为可以对应十进制数0-31,依次类推: 
bitmap表为: 
a[0]--------->0-31 
a[1]--------->32-63 
a[2]--------->64-95 
a[3]--------->96-127 
.......... 
那么十进制数如何转换为对应的bit位,下面介绍用位移将十进制数转换为对应的bit位。 

3、 位移转换 

申请一个int一维数组,那么可以当作为列为32位的二维数组,

               |                           32位                                       |

int a[0]    |0000000000000000000000000000000000000|

int a[1]    |0000000000000000000000000000000000000|

………………

int a[N]   |0000000000000000000000000000000000000|

例如十进制0,对应在a[0]所占的bit为中的第一位: 00000000000000000000000000000001 

0-31:对应在a[0]中 
i =0                            00000000000000000000000000000000 
temp=0                     00000000000000000000000000000000 
answer=1                 00000000000000000000000000000001 

i =1                            00000000000000000000000000000001 
temp=1                     00000000000000000000000000000001 
answer=2                 00000000000000000000000000000010 

i =2                            00000000000000000000000000000010 
temp=2                     00000000000000000000000000000010 
answer=4                 00000000000000000000000000000100 

i =30                              00000000000000000000000000011110 
temp=30                       00000000000000000000000000011110 

answer=1073741824  01000000000000000000000000000000 

i =31                               00000000000000000000000000011111 
temp=31                         00000000000000000000000000011111 
answer=-2147483648 10000000000000000000000000000000 
32-63:对应在a[1]中 
i =32                            00000000000000000000000000100000 
temp=0                        00000000000000000000000000000000 
answer=1                    00000000000000000000000000000001 

i =33                            00000000000000000000000000100001 
temp=1                       00000000000000000000000000000001 
answer=2                    00000000000000000000000000000010 

i =34                            00000000000000000000000000100010 
temp=2                        00000000000000000000000000000010 
answer=4                    00000000000000000000000000000100 

i =61                              00000000000000000000000000111101 
temp=29                       00000000000000000000000000011101 
answer=536870912    00100000000000000000000000000000 

i =62                               00000000000000000000000000111110 
temp=30                        00000000000000000000000000011110 
answer=1073741824  01000000000000000000000000000000 

i =63                                00000000000000000000000000111111 
temp=31                         00000000000000000000000000011111 
answer=-2147483648  10000000000000000000000000000000
浅析上面的对应表,分三步: 
1.求十进制0-N对应在数组a中的下标: 
十进制0-31,对应在a[0]中,先由十进制数n转换为与32的余可转化为对应在数组a中的下标。比如n=24,那么 n/32=0,则24对应在数组a中的下标为0。又比如n=60,那么n/32=1,则60对应在数组a中的下标为1,同理可以计算0-N在数组a中的下标。 

2.求0-N对应0-31中的数: 

十进制0-31就对应0-31,而32-63则对应也是0-31,即给定一个数n可以通过模32求得对应0-31中的数。 

3.利用移位0-31使得对应32bit位为1. 

找到对应0-31的数为M, 左移M位:2^M. 然后置1.

由此我们计算10000000个bit占用的空间:

1byte = 8bit

1kb = 1024byte

1mb = 1024kb

占用的空间为:10000000/8/1024/1024mb。

大概为1mb多一些。

3、 扩展 

        Bloom filter可以看做是对bit-map的扩展 

4、 Bit-Map的应用

      1)可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下。

       2)去重数据而达到压缩数据

5、 Bit-Map的具体实现

c语言实现:

#define BITSPERWORD 32#define SHIFT 5#define MASK 0x1F#define N 10000000int a[1 + N/BITSPERWORD];//申请内存的大小//set 设置所在的bit位为1void set(int i) {         a[i>>SHIFT] |=  (1<<(i & MASK)); }//clr 初始化所有的bit位为0void clr(int i) {         a[i>>SHIFT] &= ~(1<<(i & MASK)); }//test 测试所在的bit为是否为1int  test(int i){  return a[i>>SHIFT] &   (1<<(i & MASK)); }int main(){ int i; for (i = 0; i < N; i++)  clr(i);   while (scanf("%d", &i) != EOF)  set(i); for (i = 0; i < N; i++)  if (test(i))   printf("%d\n", i); return 0;}

注明: 左移n位就是乘以2的n次方,右移n位就是除以2的n次方

解析本例中的void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }

1)  i>>SHIFT:
其中SHIFT=5,即i右移5为,2^5=32,相当于i/32,即求出十进制i对应在数组a中的下标。比如i=20,通过i>>SHIFT=20>>5=0 可求得i=20的下标为0;
2)  i & MASK:
其中MASK=0X1F,十六进制转化为十进制为31,二进制为0001 1111,i&(0001 1111)相当于保留i的后5位。
比如i=23,二进制为:0001 0111,那么
                         0001 0111
                   &    0001 1111 = 0001 0111 十进制为:23
比如i=83,二进制为:0000 0000 0101 0011,那么
                          0000 0000 0101 0011
                     &   0000 0000 0001 0000 = 0000 0000 0001 0011 十进制为:19
i & MASK相当于i%32。
3) 1<<(i & MASK)
相当于把1左移 (i & MASK)位。
比如(i & MASK)=20,那么i<<20就相当于:
         0000 0000 0000 0000 0000 0000 0000 0001 << 20
       =0000 0000 0001 0000 0000 0000 0000 0000 

注意上面 “|=”.

在博文: 提到过这样位运算应用:

 将int型变量a的第k位清0,即a=a&~(1<<k)

 将int型变量a的第k位置1, 即a=a|(1<<k)

这里的将  a[i/32] |= (1<<M)); 第M位置1 .

4) void set(int i) {        a[i>>SHIFT]  
|=  (1<<(i & MASK)); }等价于:
void set(int i) {    a[i/32] |= (1<<(i%32)); }

即实现上面提到的三步:

1.求十进制0-N对应在数组a中的下标: n/32 

2.求0-N对应0-31中的数: N%32=M

3.利用移位0-31使得对应32bit位为1: 1<<M,并置1;

php实现是一样的:

>SHIFT] |=  (1<<($i & MASK));   }  //clr 初始化所有的bit位为0  function clr($i) {              $a[$i>>SHIFT] &= ~(1<<($i & MASK));   }  //test 测试所在的bit为是否为1  function test($i){      global $a;      return $a[$i>>SHIFT] & (1<<($i & MASK));   }  $aa = array(1,2,3,31, 33,56,199,30,50);  while ($v =current($aa))  {   set($v);    if(!next($aa)) {       break;   }}foreach ($a as $key=>$v){    echo $key,'=', decbin($v),"\r\n";}
然后我们打印结果:

0=11000000000000000000000000001110

1=1000001000000000000000010
6=10000000

32位表示,实际结果一目了然了,看看1,2,3,30,31, 33,50,56,199数据所在的具体位置:

       31    30                                                                                        3     2     1

                                                                                                     

0=    1     1    00       0000   0000   0000   0000    0000     0000   1     1   1  0

                          56                 50                                                33

                                                                                              

1=  0000     0001    0000   0100   0000    0000     0000    0010

                                                                               199

                                                                               

6=  0000  0000    0000   0000   0000    0000    1000    0000

【问题实例】

已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。 (可以理解为从0-99 999 999的数字,每个数字对应一个Bit位,所以只需要99M个Bit==1.2MBytes,这样,就用了小小的1.2M左右的内存表示了所有的8位数的电话)
2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上,在遍历这些数的时候,如果对应位置的值是0,则将其置为1;如果是1,将其置为2;如果是2,则保持不变。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。

实现:

// TestWin32.cpp : Defines the entry point for the console application.#include "stdafx.h"#include
  //用char数组存储2-Bitmap,不用考虑大小端内存的问题  unsigned char flags[1000]; //数组大小自定义   unsigned get_val(int idx)  { // |    8 bit  |// |00 00 00 00|  //映射3 2 1 0// |00 00 00 00|  //表示7 6 5 4// ……// |00 00 00 00| int i = idx/4;  //一个char 表示4个数, int j = idx%4;   unsigned ret = (flags[i]&(0x3<<(2*j)))>>(2*j);   //0x3是0011 j的范围为0-3,因此0x3<<(2*j)范围为00000011到11000000 如idx=7 i=1 ,j=3 那么flags[1]&11000000, 得到的是|00 00 00 00| //表示7 6 5 4   return ret;  }        unsigned set_val(int idx, unsigned int val)  {   int i = idx/4;      int j = idx%4;      unsigned tmp = (flags[i]&~((0x3<<(2*j))&0xff)) | (((val%4)<<(2*j))&0xff);      flags[i] = tmp;      return 0;  }  unsigned add_one(int idx)  {   if (get_val(idx)>=2) {  //这一位置上已经出现过了??  return 1;   }  else  {    set_val(idx, get_val(idx)+1);    return 0;   }  }        //只测试非负数的情况;  //假如考虑负数的话,需增加一个2-Bitmap数组.  int a[]={
1, 3, 5, 7, 9, 1, 3, 5, 7, 1, 3, 5,1, 3, 1,10,2,4,6,8,0};        int main()   {   int i;      memset(flags, 0, sizeof(flags));                printf("原数组为:");   for(i=0;i < sizeof(a)/sizeof(int); ++i)  {    printf("%d  ", a[i]);    add_one(a[i]);   }      printf("\r\n");            printf("只出现过一次的数:");      for(i=0;i < 100; ++i)  {    if(get_val(i) == 1)     printf("%d  ", i);          }   printf("\r\n");    return 0;  }

           

给我老师的人工智能教程打call!

这里写图片描述
你可能感兴趣的文章
Linux select TCP并发服务器与客户端编程
查看>>
Linux系统编程——线程池
查看>>
Linux系统编程——线程池
查看>>
yfan.qiu linux硬链接与软链接
查看>>
Linux C++线程池实例
查看>>
shared_ptr简介以及常见问题
查看>>
c++11 你需要知道这些就够了
查看>>
c++11 你需要知道这些就够了
查看>>
shared_ptr的一些尴尬
查看>>
C++总结8——shared_ptr和weak_ptr智能指针
查看>>
c++写时拷贝1
查看>>
C++ 写时拷贝 2
查看>>
Linux网络编程---I/O复用模型之poll
查看>>
Java NIO详解
查看>>
单列模式-编写类ConfigManager读取属性文件
查看>>
java中float和double的区别
查看>>
Statement与PreparedStatement区别
查看>>
Tomcat配置数据源步骤以及使用JNDI
查看>>
before start of result set 是什么错误
查看>>
(正则表达式)表单验证
查看>>